Relational Query Processing on OpenCL-based FPGAs

Zeke Wang, Johns Paul, Hui Yan Cheah
NTU, Singapore

Bingsheng He
NUS, Singapore

Wei Zhang
HKUST, Hong Kong

Abstract—The release of OpenCL support for FPGAs represents a significant improvement in extending database applications to the reconfigurable domain. Taking advantage of the programmability offered by the OpenCL HLS tool, an OpenCL database can be easily ported and re-designed for FPGAs. A single SQL query in these database systems usually consists of multiple operators, and each one of these operators in turn consists of multiple OpenCL kernels. Due to the specific properties of FPGAs, each OpenCL kernel can have different FPGA-specific optimization combinations, in terms of CU (compute unit) and SIMD (kernel vectorization), which are critical to the overall performance of query processing. Due to the resource limitation of an FPGA image, our query plan also considers the possibility of using multiple FPGA images. In this paper, we propose an FPGA-specific cost model to determine the optimal query plan in less than one minute. In particular, the FPGA synthesis time is significantly reduced by avoiding the need to evaluate all the feasible query plans on real FPGAs. Our cost model has two components: unit cost and optimal query plan generation. The first component generates multiple (unit cost, resource utilization) pairs for each kernel. The second component employs a dynamic programming approach to generate the optimal query plan which considers the possibility of using multiple FPGA images. The experiments show that 1) our cost model can accurately predict the performance of each feasible query plan for the input query, and can guide the optimal query plan generation, 2) our optimized query plan achieves a performance speedup $1.5 \times - 4 \times$ over the state-of-the-art query processing on OpenCL-based FPGAs.

I. INTRODUCTION

FPGAs have become an attractive and effective hardware accelerator for many relational database applications. Many of the previous studies, e.g., [6, 17, 18, 20, 24], have demonstrated significant performance improvement and superb energy efficiency. However, those systems are mostly implemented in low-level hardware description languages (HDLs) like Verilog and VHDL. The programmability issues of HDLs call for advanced high level synthesis (HLS). Recently, FPGA vendors such as Altera [7, 8] and Xilinx [21] have started to develop OpenCL SDKs. Since OpenCL explicitly exposes the data-level parallelism in the kernel programming, it is very suitable for developing database applications that inherently have extensive data parallelism. As a fact, a few database systems have been re-designed for CPU/GPU in OpenCL (e.g., [14, 15, 36]). In this study, we investigate whether and how we can improve the query processing performance on OpenCL-based FPGAs.

An SQL query in OpenCL-based database systems usually consists of multiple operators, each of which consists of multiple OpenCL kernels. Due to the specific properties of FPGA, each OpenCL kernel has different optimization combinations, in terms of CU (compute unit) and SIMD (kernel vectorization). Each optimization combination then requires a different amount of FPGA resources in LUTs, REGs, RAMs, and DSPs. Furthermore, if we enable a more aggressive optimization, which requires more FPGA resources, for one kernel, other kernels in the same query may not be able to implement desired optimizations due to the resource constraints or we may have to generate another FPGA image to hold these kernels. In the latter case, the FPGA switches from one image to another during query processing, which requires FPGA reconfiguration and buffer transfer via PCI-e. Therefore, finding an optimal query plan (optimization combination for each kernel) for the input query is essential to achieve good performance on OpenCL-based FPGAs.

In order to efficiently generate the optimal query plan for the input query, we present an FPGA-specific cost model, so that we do not need to iteratively evaluate all feasible query plans on FPGAs to determine the optimal query plan. Since there are many optimization combinations for each kernel, the number of feasible query plans is large. What makes search space even larger is that we also consider another dimension of multiple FPGA images to implement the input query. Since each FPGA image takes hours to synthesize, it is very time-consuming to evaluate all feasible query plans directly on FPGAs. Fortunately, our FPGA-specific cost model can generate the optimal query plan by estimating the execution time of feasible query plans such that no feasible query plan is evaluated on real FPGAs.

In particular, our cost model has two components: unit cost and optimal query plan generation. First, we implement each operator kernel with different optimization combinations, each of which has multiple (unit cost, resource utilization) pairs. Second, based on (unit cost, resource utilization) pairs for each kernel, we present the dynamic programming based algorithm to determine the optimal query plan, which consists of the proper optimization combination for each kernel and the number of FPGA images.

One advantage of this layered approach is that we only need to re-run the dynamic programming based algorithm to determine the new query plan for the input query when one operator kernel is further optimized to have one better implementation. In particular, the implementation has smaller unit cost and relatively low resource utilization.

We integrate our the FPGA-specific cost model into OmniDB [14, 15, 36], and evaluate the proposed design on an Altera Stratix V GX FPGA. The experiments show that 1) our cost model is able to accurately predict the performance of each feasible query plan for the input query, and to guide the generation of the optimal query plan, 2) the proposed cost model achieves a $1.5 \times - 4 \times$ performance speedup in the database query processing over running OmniDB on FPGA.
The main contributions of this work are summarized as follows:

- We explore the implementations of each operator kernel using different FPGA-specific optimization combinations (such as CU and SIMD).
- We present a dynamic programming-based approach to generate the optimal execution plan for each input query, so that the optimal query plan (the proper optimization combination for each kernel and the number of FPGA images) can be determined in less than a minute.
- We evaluate the feasible execution plans with multiple FPGA images on OpenCL-based FPGAs.

The remainder of the paper is organized as follows. In Section II, we introduce the background of OpenCL-based FPGA and database query processing. In Section III, we present two observations of this study. We present the system overview in Section IV, and the details on the query plan generation in Section V. We present the experiment results in Section VI. We review the related work in Section VII and conclude and present our future work in Section VIII.

II. BACKGROUND

A. Altera OpenCL SDK

Altera OpenCL SDK [1] abstracts away the complexities involved in programming FPGAs with HDL, and the FPGA bitstream file is directly created by compiling the input OpenCL kernel file. It takes hours to successfully generate a single bitstream file. With Altera OpenCL SDK, the FPGA is viewed as a massively parallel architecture and a single OpenCL kernel can have one or more kernel pipelines (i.e., compute units), which increases the parallelism of the kernel. An example kernel with 2 kernel pipelines is shown in Figure 1.

The FPGA memory hierarchy has three layers. a) Global memory with high latency and low bandwidth which resides in the DDRs of the FPGA board, b) Local memory with low latency and high bandwidth, and c) Private memory that stores data associated with each work item, existing in Pipeline, as shown in Figure 1. An OpenCL kernel consists of multiple work groups, and each work group consists of multiple work items. Both the local and private memories are located within the FPGA. Local memory has four banks and acts as scratch pad for one compute unit.

Recent OpenCL frameworks on FPGAs have already explored the three optimization methods that are originally proposed for GPUs: thread parallelism (TP), local memory (SM) and memory coalescing (MC). TP allow users to employ multiple work items to achieve the thread parallelism. SM employs local memory to buffer the intermediate data and then the number of global memory accesses is reduced. MC combines multiple global memory transactions with small data size into one coalesced global memory transaction so that the number of global memory accesses is reduced.

Besides, we also employ two FPGA-specific optimizations on our OpenCL kernels: CU and SIMD.

CU: If there are sufficient hardware resources available within the FPGA, then the kernel pipeline can be replicated to generate multiple compute units to achieve higher throughput. The inner hardware scheduler automatically dispatches the work groups among compute units.

SIMD: It can be applied to translate multiple scalar arithmetic operations to a single vector arithmetic operation. With SIMD, the number of total work items can be reduced, while each work item has the same amount of workload.

B. Query Processing

In relational databases, an SQL query is executed based on a query plan generated by the database system. A query plan is defined as an ordered set of steps (i.e., operators) that is used to retrieve and process data from a database. It is represented by a tree structure. For a database system implemented in OpenCL (OmniDB in this study), each operator is implemented as one or more OpenCL kernels.

When an SQL query is submitted to a database system, the system performs a number of steps for query processing, including parsing the input query to generate a query plan, optimizing the query plan and then evaluating the optimized query plan. In OmniDB, a query is evaluated by executing the OpenCL kernels for each of the operator in the query plan.

Figure 2 shows the query plan for the following query Q4, where ‘key’ (or ‘payload’) is an attribute of both the relations R and S, and ‘Lo’ (‘Hi’) is the lower (upper) bound for the selection.

Q4: SELECT R.key, R.payload, S.payload FROM R, S
WHERE Lo <= S.key <= Hi AND R.key = S.key
ORDER BY R.key

Fig. 2: A example query (Q4) and its query tree

III. OBSERVATIONS

Our FPGA-specific cost model is motivated by the following two observations. First, for the same operator/query processing, different optimization combinations can result in significantly different resource consumptions and different execution times. Second, FPGA reconfiguration overhead is an important performance factor for generating the optimal query plan when multiple FPGA images are considered. The detailed experimental setup can be found in Subsection VI-A.

A. Impact of Optimization Combination

The scanLargeArrays kernel is one of three kernels belonging to the primitive prefix scan (i.e., prefix sum) [36]. Figure 3 shows the impact of different optimization combinations on the execution time and resource utilization of the scanLargeArrays kernel when the input table has 128M tuples. We give the utilization of LUTs, REGs, RAMs and DSPs, and also present
the execution time, where \(CU = x \) stands for \(x \) number of CUs for the kernel \(scanLargeArrays \). The exact meanings of the \(scanLargeArrays \) kernel are not important here, and we present more details in Section IV-A1. The results clearly show that a considerable decrease in total execution time can be achieved by applying more aggregative optimization, which results in an increase in resource utilization.

B. FPGA Reconfiguration Overhead

According to Altera, the FPGA reconfiguration overhead includes the following two components for current OpenCL-based FPGA boards.

The first component of the reconfiguration overhead is the time taken to fully reconfigure the FPGA, denoted by \(F_O \). In particular, the new bitstream is transferred to FPGA context. Then, the PCIe bus and DDR controller are re-initialized. Since this bitstream loading delay is generally stable, we model it as a constant.

The second component includes the time to transfer the active contents (memory footprint) of the FPGA memory to host memory via PCIe before the full reconfiguration and the time to transfer the active contents from host memory to FPGA memory after the full reconfiguration. This transfer of active contents is needed since FPGA memory contents can be corrupted during the re-initialization of DDR controller. Also, the Altera FPGA under study does not support runtime partial reconfiguration when using OpenCL. The time for this component is linear to the memory footprint, with respect to the bandwidth of PCIe bus. The corresponding ratio of the time to the memory footprint is denoted by \(U_T \).

Therefore, the relationship between the FPGA reconfiguration overhead (denoted by \(reconf_{overhead} \)) and the FPGA memory footprint (denoted by \(buffer_size \)) can be linear, as shown in Equation 1.

\[
reconf_{overhead} = U_T \ast buffer_size + F_O \tag{1}
\]

In order to identify \(U_T \) and \(F_O \), we collect five pairs of training data sets, each of which is of the form \((buffer_size, reconf_{overhead})\). We use a linear regression model with the least square fitting to predict the reconfiguration overhead. The linear regression model achieves a reasonably high accuracy in predicting the reconfiguration overhead. And we observe that \(U_T \) is 0.993 ms/MB and \(F_O \) is 1914.6 ms.

IV. SYSTEM OVERVIEW

Two observations in Section III, motivating our study of query processing on OpenCL-based FPGAs, are 1) more aggressive optimizations which require more FPGA resources can have better performance for each kernel which means multiple FPGA images can reduce the execution time of the input query, 2) the latency for FPGA reconfiguration is a non-negligible overhead which can impact the performance of query processing on OpenCL-based FPGAs. Therefore, there is an FPGA-specific performance tradeoff. Hence, how to efficiently utilize FPGA resources, by using appropriate optimization combination for each kernel and multiple FPGA images, is critical to achieve the good performance on OpenCL-based FPGAs. Our FPGA-specific cost model can generate the optimal query plan by estimating the execution times of all the feasible query plans for the input query plan and then choosing the query plan with minimum estimation time.

In the following, we present the implementation details of query processor as well as the FPGA-specific cost model.

A. Implementation of Query Processor

As a start, we study OmniDB, state-of-the-art database designed and implemented in OpenCL [36]. As OmniDB is originally designed for CPU/GPU, we need to revisit its design and implementation on the abstraction of OpenCL SDK on FPGAs, as shown in Figure 4.

The query processor of OmniDB is implemented using a layered design: \textit{storage}, \textit{data-parallel primitives}, \textit{access methods}, and \textit{operators}. The primitives are data-parallel operations which are used as basic blocks for implementing operators. We adopt the implementation of primitives and operators from OmniDB [36], and focus on the impact of FPGA-centric optimization techniques to the existing implementations. More details of the design and implementation of individual kernels can be found in [36]. One advantage of the primitive-based approach is that all the corresponding operators can have the speedup when the specific primitive is accelerated. We briefly describe the primitives and operators on FPGAs.

1) Primitives: The primitives, which form the relational operators, are implemented using OpenCL kernels with different optimization methods for query processing.

Map: The \textit{map} primitive applies the input map function to every tuple in the input relation. The implementation, with only one OpenCL kernel (\textit{map}), has already explored the two optimization methods: TP and MC. Both can lead to the good performance on GPUs and FPGAs. Besides, we also explore one FPGA-specific optimization method (CU) to accelerate the kernel performance of \textit{map} primitive. However, SIMD cannot work since the memory output address is random.

Scatter and Gather: The \textit{scatter} primitive performs sequential reads from the input relation and indexed writes to
the output scan with input location array, while the gather primitive performs indexed reads from the input relation with input location array and performs sequential writes to the output relation. When the input locations are random, scatter and gather can both have the property of random memory access. Therefore, the existing optimal implementations for GPUs employ multi-pass optimization scheme [13] to efficiently utilize the GPU cache and then improve the temporal locality of indexed memory accesses. However, as FPGAs do not possess the cache hierarchy of CPUs/GPUs, we use the one-pass implementation. The implementation of scatter (or gather) primitive, with only one OpenCL kernel scatter (or gather), has already explored the two optimization methods: TP and MC. Besides, we also explore one FPGA-specific optimization method (CU) to accelerate their performances. However, SIMD cannot work since the memory input (or output) address of gather (or scatter) primitive is random.

Prefix scan: It is an important building block for many parallel database applications [12], such as filter and aggregation. Its parallel implementation [36] contains three OpenCL kernels (scanLargeArrays, prefixSum and blockAddition), and they are executed sequentially. The implementations of scanLargeArrays and prefixSum kernels have already explored the three optimization methods: TP, SM and MC. Besides, we also explore one FPGA-specific optimization method (CU) to accelerate the two kernels. However, SIMD cannot work since consecutive work items suffer from path divergences. The implementations of blockAddition kernel have already explored the two optimization methods: TP and MC. Besides, we also explore two FPGA-specific optimization methods (CU and SIMD) to accelerate the kernel. Because the execution time of kernel prefixSum is very small compared with other kernels in this primitive, it has only one optimization combination.

Filter: The filter primitive produces a subset of tuples from an input relation with the input filter condition. Its implementation contains three primitives (map, prefix scan and scatter), which are executed sequentially. The detailed implementation for each primitive has been described above.

Reduce: The reduce primitive computes a value (using the specific arithmetic function) from input relation, based on the specific key. Its implementation [36] utilizes the optimization method SM to reduce the number of global memory accesses. Besides, we also explore the FPGA-specific optimization method (CU) to accelerate performance. However, SIMD cannot work since consecutive work items suffer from path divergences.

Sort: The sort primitive transforms the input relation of unordered tuples into the output relation of tuples ordered based on the specific input key. Based on the implementation from OmniDB, we further apply the optimization method SM to improve the temporal locality and then improve the sorting performance. We also employ optimization method (kernel fusion) to merge the similar kernels and then only two OpenCL kernels (bitonicSortShared and bitonicMergeGlobal) are required in our implementation. They are executed repeatedly. The kernel (bitonicSortShared) employs the optimization method SM. Besides, both kernels can explore the optimization method (CU), where \(L_{CU} \) stands for the number of CUs for kernel (bitonicSortShared) and \(G_{CU} \) stands for the number of CUs for kernel (bitonicMergeGlobal). However, SIMD cannot work for two kernels since consecutive work items suffer from path divergences.

2) Relational Operator: Each relational operator is comprised of one or more primitives. We briefly present the implementation for completeness.

Selection: The relational operator selection is implemented by the primitive filter, and the predicate evaluation of selection is corresponding to the filter function of primitive filter.

Order-by: The relational operator Order-by is implemented by the primitive sorting.

Grouping and Aggregation: The grouping is implemented by the two primitives sort, prefix scan and the kernels scanGroupLabel, groupByImpl_write. We explore the FPGA-specific optimization method (CU) to accelerate both kernels (scanGroupLabel and groupByImpl_write). The aggregation is implemented by the primitive reduce.

Joins: The relational operator hash join takes two relations as input, and finds the matching tuple pairs from the two relations according to the join predicate. In the paper, we mainly focus on the simple hash join [36]. It has two kernels, buildTable and probeTable. We explore the FPGA-specific optimization method (CU) to accelerate both kernels. Besides, we also explore the FPGA-specific optimization method (Local) to use local memory based lock instead of the default global memory based lock.

B. FPGA-specific Cost Model

In order to efficiently generate the optimal query plan, our FPGA-specific cost model needs to estimate the execution times of feasible query plans for the input query and then chooses the query plan with minimum execution time. The cost model, following layered design, has two components: unit cost and optimal query plan generation. The description of each component is shown in the following.

1) Unit Cost: Since the specific implementations of OpenCL kernels are not made available to users, it is very difficult to accurately develop an analytical model for each database operator kernel. Therefore, we treat the OpenCL-based FPGAs as a black box and measure the unit cost of each operator kernel with different optimization combinations, each of which requires different amount of FPGA resources. The unit cost of each kernel is supposed to be the number of total clock cycles (not the elapsed time) divided by the number of tuples in the input relation, since the evaluated kernel can have different frequency when it stays at different FPGA images each of which may have various other OpenCL kernels in the practical implementation. We experimentally measured the unit costs of each kernel with different optimization combinations. We calculate the total cost of a kernel as the unit cost multiplied by the number of input tuples for the kernel. Due to the layered design of OmniDB, we can estimate the cost of each primitive/operator similarly.

For each primitive, we study the unit cost of applying different optimization techniques to its implementation. In particular, we log down each implementation with the format: (CU, SIMD, LEs, REGs, BRAMs, DSPs, Unit cost). Clearly, we observe that different optimization techniques result in very different unit costs, which should be factored into the query plan generation.

2) Optimum Query Plan Generation: The input query consists of multiple operators, each of which consists of multiple OpenCL kernels. Since each kernel has multiple
TABLE I: Summary of parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of kernels at the operator array</td>
</tr>
<tr>
<td>K_i</td>
<td>Kernel i at the kernel array, $1 \leq i \leq N$</td>
</tr>
<tr>
<td>S_i</td>
<td>Kernel array with kernels $(K_1, ..., K_N)$, $1 \leq i \leq N$</td>
</tr>
<tr>
<td>T_{ij}^{opt}</td>
<td>Minimum execution time for kernels K_j, ..., K_i, in one image</td>
</tr>
<tr>
<td>C_{ij}^{opt}</td>
<td>The optimization combination for kernels K_j, ..., K_i in one image</td>
</tr>
<tr>
<td>R_i</td>
<td>Reconfiguration overhead when kernel K_i has one new image</td>
</tr>
<tr>
<td>T_{ip}^{dp}</td>
<td>Minimum execution time to compute the kernel array S_i (considering multiple FPGA images), $T_{ip}^{dp} = 0$</td>
</tr>
<tr>
<td>Z_i</td>
<td>Number of candidate implementations with different optimization combinations for kernel K_i</td>
</tr>
<tr>
<td>C_i</td>
<td>Information (optimization combination for each kernel and number of FPGA images) of kernel array S_i</td>
</tr>
</tbody>
</table>

Algorithm 1: Dynamic Programming Algorithm

Input: N, T_{ij}^{opt}, C_{ij}^{opt}, and R_i as defined in Table I.
Output: C_i and T_{ip}^{dp} as defined in Table I.

1. $T_{ip}^{dp} = 0$;
2. /* Compute optimal substructure T_{ip}^{dp} at the loop i */
3. /* T_{min} is initialized to be ∞. */
4. $T_{min} \leftarrow \infty$
5. for ($i \leftarrow 1$ to N)
 6. /* T_{min} is set to infinity (Line 3) to make sure that all feasible solutions are considered. */
 7. $T_{temp} = T_{dp}^{dp} + T_{ij}^{opt} \ldots + R_{i+1}$
 8. if ($T_{temp} < T_{min}$) then
 9. $T_{min} \leftarrow T_{temp}$
 10. config$_temp$ = (C_{i}, j, R_{i+1}, $C_{(j+1)}^{opt}$);
 11. end
12. end
13. $T_{dp} = T_{min}$
14. $C_i = config_temp$
15. end

V. GENERATION OF OPTIMUM QUERY PLAN

In this section, we present the problem formulation, followed by the dynamic programming based approach which is used to generate the optimal query plan. Table I summarizes the key parameters in the section.

A. Problem Formulation

Given the input query, our goal is to achieve the optimal query plan which requires the minimum execution time on OpenCL-based FPGAs. Since the input query, in terms of operators, is represented using an operator tree, we employ the topological sorting [19] to generate all the feasible solutions (operator arrays). We evaluate all the feasible operator arrays and then select the optimal operator array which requires the minimum execution time.

The operator array consists of M relational operators (O_1, O_2, ..., O_M), which are executed one by one on OpenCL-based FPGAs. Since each operator O_i consists of n_i OpenCL kernels the operator array is converted to a kernel array with N OpenCL kernels (K_1, K_2, ..., K_N). In this paper, we do not consider the case where several operator kernels execute concurrently, concurrent execution of several kernels cannot always achieve better performance due to the memory interference, given the very limited memory bandwidth on FPGAs. Therefore, the original problem of generating the optimal query plan is converted to the problem of minimizing the execution time (denoted as T_{N}^{dp}) of the kernel array.

B. Dynamic Programming Approach

Dynamic programming is an efficient algorithmic design approach for complex problems [3]. In the dynamic programming approach, a complex problem (finding the optimal query plan among all the feasible query plans) is solved by breaking it down into a series of simpler subproblems (minimizing the execution time of kernel sub arrays), solving these subproblems and then using the solution of these subproblems to evaluate the result of the complex problem. The overlap of these subproblems is used to reduce the computation time of our program. Now we define T_{dp}^{dp} to be the minimum execution time for the kernel array with i kernels ($1, ..., i$), where i ranges from 1 to N. The corresponding implementation is shown in Algorithm 1.

Since the kernel array S_0 is empty, T_{dp}^{dp} is set to 0 (Line 1). T_{dp}^{dp} is computed during the i^{th} iteration of the outer loop (Lines 2-13). Once T_{dp}^{dp} is computed, the outer loop terminates and the optimal query plan is generated. Also initially T_{min} is set to infinity (Line 3) to make sure that all feasible solutions are considered.

Each iteration of the inner loop (Lines 4-10) evaluates one feasible solution for the sub-array (K_1, K_2, ..., K_i). In particular, the j^{th} iteration ($0 \leq j \leq i - 1$) of the inner loop evaluates the execution time of the kernel sub array S_j, as the sum of three components (Line 5). The first component is the minimum execution time (T_{dp}^{opt}) of the kernel sub array S_j, the second component is the minimum execution time (T_{dp}^{opt}) of the kernel array (K_{j+1}, K_{j+2}, ..., K_i) with the optimal configuration $C_{(j+1)}^{opt}$ in one FPGA image, and the third component is the reconfiguration overhead (R_{i+1}) since the kernel array (K_{j+1}, K_{j+2}, ..., K_i) belongs to one new FPGA image. The detailed evaluations of T_{dp}^{opt} and R_{i+1} can be found in our technical report [34]. This sum is then stored in T_{temp}. To evaluate T_{temp} in each iteration of the inner loop j, we employ the concept of dynamic programming by reusing the value of (T_{dp}^{dp}) computed in the previous outer loop j so that the redundant computation can be reduced.

When T_{temp} is smaller than T_{min} (Line 6), T_{min} implementations (unit cost, resource utilization), we present a dynamic programming based approach to determine the optimal query plan, which consists of the proper optimization combination for each kernel and the number of FPGA images. Therefore, the input query can achieve the best performance on OpenCL-based FPGAs. The implementation details are described in Section V.

Summary: The layered design of our cost model has the advantage of effectively adding new optimizations for each operator. When an operator is further optimized with any of the FPGA-centric optimizations (discussed in Subsection IV-A), the cost model only needs to profile new (unit cost, resource utilization) pairs and then re-run the query plan generation. People can still keep exploring other FPGA-specific optimizations, e.g., kernel fusion and loop unrolling, to further accelerate primitives on FPGAs, and then produce more efficient (unit cost, resource utilization) pairs.
is set to be T_{temp} (Line 7) and the corresponding configurations (including C_j, j, R_{j+1} and C_{one}) are stored in config_temp (Line 8). Since the inner loop j iterates through every possible implementation for the sub-array of i kernels, T_{min} is guaranteed to be the minimum possible execution time for these kernels. Finally, $T^{opt}_{i,j}$ is set to be T_{min} (Line 11), and C_i to config_temp (Line 12).

VI. EXPERIMENTAL EVALUATION

In this Section, we firstly present the experimental setup, secondly we evaluate our cost model which generates the optimal query plan, and thirdly evaluate the overall performance speedup of our proposed design.

A. Experimental Setup

Hardware configuration. We conduct our experiments on a Terasic DE5-Net board with an Altera Stratix V FPGA and 4GB 2-tank DDR3 device memory. We design our kernels using Altera OpenCL SDK version 14.0. The FPGA board is connected to the host via a x8 PCI-e 2.0 interface.

Workloads. Four queries (Q1, Q2, Q3 and Q4) are evaluated, as shown in Table II. Those four queries are defined to be simple enough to cover the evaluated features. We plan to have a more complete evaluation with TPC-H queries.

We use column stores for query processing on OpenCL-based FPGAs. Each tuple of input relations R and S has the format <key, payload>. Both keys and payloads are random 4-byte integers and the number of tuples ranges from 1M to 128M so that the input can fit into the FPGA memory. However, the number of input tuples for Q4 ranges from 1M to 64M because input data with 128M tuples cannot fit inside the FPGA due to the larger memory footprint of Q4 as compared to the other three queries.

| Table II: Evaluated Queries |

<table>
<thead>
<tr>
<th>ID</th>
<th>Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>SELECT * FROM S WHERE Lo < S.key < Hi</td>
</tr>
<tr>
<td>Q2</td>
<td>SELECT S.key, MAX(S.payload) FROM S GROUP BY S.key</td>
</tr>
<tr>
<td>Q3</td>
<td>SELECT S.key, SUM(S.payload) FROM S WHERE Lo < S.payload < Hi GROUP BY S.key</td>
</tr>
<tr>
<td>Q4</td>
<td>SELECT R.payload, S.payload FROM R, S WHERE Lo < S.key < Hi AND R.key = S.key ORDER BY R.payload</td>
</tr>
</tbody>
</table>

B. Cost Model Evaluation

In this subsection, our cost model firstly analyzes the relationship between optimization combination and unit cost for each kernel, secondly generates the proper query plan for each query, thirdly analyzes the break-even points for each query and finally we present the performance breakdowns.

1) Unit Cost: We exhaustively evaluate all the optimization combinations subject to two conditions: (i) more aggressive optimization combinations are considered only if they improve the performance of the kernel when compared to a less aggressive optimization combination and (ii) the resulted hardware must be able to fit into one FPGA. In particular, we take the kernel blockAddition of the prefix scan primitive as an example. Nine optimization combinations were explored, and the relationship between resource consumption and unit cost is shown in Table III. Different optimization combinations may have different unit costs for the same kernel. More SIMDs always yield better performance since the memory transactions are coalesced and then the total number of memory transactions is reduced. One interesting finding here is that more CUs cannot yield better performance since the kernel blockAddition is memory-intensive and more CUs do not reduce the number of global memory transactions. For example, the unit cost of the optimization combination (CU=1, SIMD=16) is less than that of combination (CU=2, SIMD=16). Therefore, the first condition is satisfied and we do not need to try more aggressive optimizations (more CUs) even when the FPGA has enough resource to support them. The optimization combination (CU=1, SIMD=16) can roughly achieve the best performance with reasonable FPGA resource requirement.

Because of page limitation, we cannot analyze all the eleven kernels used in the four queries. So we only present the number of optimization combinations (Number field) and the best optimization combination (with LUTs, REGs, RAMs, DSPs, UC fields) for each kernel (shown in Table IV). The Number field shows the exploration space (optimization combinations) for each kernel.

2) Query Plan Generation: For each query (Q1, Q2, Q3 or Q4), we choose the kernel array which has the minimum execution time, as shown in Figure 5.

Each kernel might have different optimization combinations and then have different unit costs. In the following, we briefly present the details on how to determine the optimization combination for each kernel and number of FPGA images, so that the execution time for the input query is minimized. Overall, our cost model can efficiently guide the optimal query plan generation for all the tested queries upon different configurations. Take Q3 for example.
TABLE IV: Summary of unit costs (UCs) for 11 kernels

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Number</th>
<th>Best Combination</th>
<th>LUTs</th>
<th>REGs</th>
<th>RAMs</th>
<th>DSPs</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort</td>
<td>6</td>
<td>L_CU = 10, G_CU = 2</td>
<td>99192</td>
<td>291232</td>
<td>2138</td>
<td>0</td>
<td>26.63</td>
</tr>
<tr>
<td>buildTable</td>
<td>5</td>
<td>C_U = 1, Local = 1</td>
<td>9032</td>
<td>21341</td>
<td>248</td>
<td>2</td>
<td>9.22</td>
</tr>
<tr>
<td>probTable</td>
<td>4</td>
<td>C_U = 8, SIMD = 1</td>
<td>137973</td>
<td>224294</td>
<td>1728</td>
<td>72</td>
<td>7.74</td>
</tr>
<tr>
<td>spatialJoin</td>
<td>4</td>
<td>C_U = 8, SIMD = 1</td>
<td>27197</td>
<td>83331</td>
<td>493</td>
<td>32</td>
<td>5.04</td>
</tr>
<tr>
<td>GroupLabel</td>
<td>5</td>
<td>C_U = 16, SIMD = 1</td>
<td>96877</td>
<td>187964</td>
<td>1056</td>
<td>64</td>
<td>1.46</td>
</tr>
<tr>
<td>ScanLargeArrays</td>
<td>5</td>
<td>CU = 10, SIMD = 1</td>
<td>111131</td>
<td>222282</td>
<td>1650</td>
<td>80</td>
<td>0.7</td>
</tr>
<tr>
<td>gather</td>
<td>4</td>
<td>C_U = 8, SIMD = 1</td>
<td>7057</td>
<td>134268</td>
<td>1040</td>
<td>0</td>
<td>0.55</td>
</tr>
<tr>
<td>map</td>
<td>4</td>
<td>C_U = 8, SIMD = 1</td>
<td>31725</td>
<td>53924</td>
<td>304</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>reduce</td>
<td>4</td>
<td>C_U = 8, SIMD = 1</td>
<td>103803</td>
<td>195520</td>
<td>1572</td>
<td>60</td>
<td>0.2</td>
</tr>
<tr>
<td>blockAddition</td>
<td>9</td>
<td>C_U = 1, SIMD = 16</td>
<td>8240</td>
<td>12108</td>
<td>80</td>
<td>0</td>
<td>0.11</td>
</tr>
<tr>
<td>prefixSum</td>
<td>1</td>
<td>C_U = 1, SIMD = 1</td>
<td>10598</td>
<td>20726</td>
<td>137</td>
<td>8</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Q3. When the number of input tuples is less than 16M, the cost model recommends the Execution Plan 1 which contains only one FPGA image, and the corresponding optimizations are 1 CU for map, 1 CU for gather, 2 SIMDs for blockAddition, and 1 CU for prefixSum. When the number of input tuples is larger than 16M, the cost model recommends the Execution Plan 2 which contains two FPGA images. In particular, the first image has five kernels and the corresponding optimizations are 2 CUs for map, 2 SIMDs for scanLargeArrays, 1 CU for prefixSum, and 16 SIMDs for blockAddition, and 1 CU for reduce. The estimated and measured resource consumptions and frequency of the FPGA image (Execution Plan 1) are shown in Table V. When the number of input tuples is more than 16M, the cost model recommends the Execution Plan 2 which contains three FPGA images. In particular, the first image has five kernels and the corresponding optimizations are 2 CUs for map, 2 SIMDs for scanLargeArrays, 1 CU for prefixSum, and 16 SIMDs for blockAddition, and 1 CU for reduce. The estimated and measured resource consumptions and frequency of two FPGA images (Execution Plan 2) are shown in Table V.

3) Break-even Points for Four Queries: Figure 6 shows the measured and estimated elapsed times of the input queries (Q1, Q2, Q3 and Q4), with different numbers of input tuples (1M, 2M, …, 128M), where x_Measured is the real execution time for the Execution Plan x, and x_Estimated is the estimated time for the Execution Plan x, and x is equal to 1 or 2. However, 128M tuples would not fit inside the global memory for Q4, and thus Figure 6d does not include the results for 128M.

The experimental result shows that our cost model can roughly predict the performance for each query with different number of input tuples under different execution plans. Our cost model can determine the break-even points between two execution plans for queries (Q2, Q3 and Q4). When the number of input tuples is less than 16M, Execution Plan 1 with only one FPGA image is faster than Execution Plan 2 with two (three) FPGA images, since the corresponding FPGA reconfiguration overhead dominates the total execution time. That is, it does not have any advantage when multiple FPGA images are used. When the number of input tuples is larger than 16M, Execution Plan 1 is slower than Execution Plan 2, since the kernel execution time dominates the whole execution time. In summary, our cost model can accurately recommend the optimal execution plan for queries (Q2, Q3 and Q4) with different number of input tuples.

4) Performance Breakdowns: Because of page limitation, we only present the time breakdowns for the query Q3 with 8M and 64M input tuples, as shown in Figures 7a and 7b, respectively. x_Measured means the execution time for Execution Plan x and x_Estimated means the estimated time for Execution Plan x provided by our cost model, where x is equal to 1 or 2. filter stands for five OpenCL kernels (map, scanLargeArrays, prefixSum, blockAddition and gather), and scan_gather_reduce stands for the five kernels (scanLargeArrays, prefixSum, blockAddition, gather and reduce).

Time breakdown with 8M input tuples. Execution Plan 1 has the better performance than that of Execution Plan 2 since the FPGA reconfiguration overhead from Execution Plan 2 is larger than the benefit from the reduced execution time when using multiple FPGA images. Since there are three FPGA
images, two FPGA reconfigurations are required and hence, the corresponding reconfiguration overhead takes the majority of total execution time for Execution Plan 2. In particular, the time for first FPGA reconfiguration exists at the kernel sort, since Altera OpenCL SDK [1] counts the reconfiguration time into the execution time of the first kernel sort in the second FPGA image. Similarly, the time for the second FPGA reconfiguration is shown along with the execution time of the kernel scanGroupLabel in the third FPGA image.

Time breakdown with 64M input tuples. Execution Plan 2 has the better performance than that of Execution Plan 1 since the FPGA reconfiguration overhead (Execution Plan 2) is less than the benefit from the reduced execution time when using multiple FPGA images. With multiple FPGA images, each operator kernel of the query plan can have more aggregative optimizations. Our cost model can choose the right execution plan (with multiple FPGA images) for this case as well.

In summary, our cost model can roughly predict the performance for all the kernels with FPGA reconfiguration overhead and then choose the right execution plan (Execution Plan 1 or 2) for the query Q3 with 8M (or 64M) input tuples.

C. Performance Comparison

Figure 8 shows the performance speedup of each input query over the original OmniDB implementation (1 CU and 1 SIMD for each kernel), which is also recommended by Altera OpenCL optimization tool [1]. When the number of input tuples is less than 16M, our cost model recommends the Execution Plan 1 for each query (Q1, Q2, Q3 and Q4). The performance speedup (1.5×–4×) is roughly stable for each query over the original OmniDB implementation. However, our cost model recommends Execution Plan 1 for query Q1 even when there are more than 16M input tuples, since the reduced computation time is limited for Q1.

More interestingly, when the number of input tuples is larger than 16M, our cost model recommends Execution Plan 2 (which has multiple FPGA images) for queries Q2, Q3 and Q4. The speed up achieved by our implementation over the original omniDB implementation increases as the number of input tuples increases.

VII. RELATED WORK

Although multicore CPUs and GPUs have been the major research platform for database query processing systems [5, 12], FPGAs are gaining popularity due to technology advances in programmable devices [23, 28]. The related studies of accelerating databases on FPGAs can be roughly divided into two categories: individual operators and queries.

Accelerations of individual operators: There have been a number of studies on accelerating individual database operations with FPGAs, such as selection, projection, aggregation, sorting and hash table [2, 4, 6, 10, 11, 17, 20, 24, 32], where FPGA is used as an accelerator. Besides, FPGA can also act as an additional hardware component in a database system to support its processing operations [18]. Most of those studies are based on low-level hardware description languages. Instead, this paper focuses on how the OpenCL framework and its features can be leveraged to improve the performance.

**Accelerating queries: Glacier [25] is a query-to-hardware compiler with library which can only support streaming operators, not all the database operators. Partial dynamic reconfiguration [9] is employed to support fast switch from one query to the next query using RTL. However, our approach can only support full reconfiguration since our approach is based on OpenCL which cannot support partial reconfiguration now. [9] can only support projections and restrictions while our approach can support all database operators.

With the OpenCL programming support on FPGAs, plenty of recent works [16, 22, 26, 27, 29–31, 33, 35] have gained great success in accelerating different a kind of applications. In contrast, this study focuses on how to optimize existing OpenCL-based databases on FPGAs.

VIII. CONCLUSION

The recent OpenCL SDKs released by FPGA vendors have enabled programmers to design and implement database systems on FPGAs in OpenCL. In this abstraction, database query processing can be viewed as the execution of a series of OpenCL kernels. Each kernel can have very different optimization combinations, which results in very different resource usages and performances. In this paper, we propose the FPGA-specific cost model to determine the optimal query plan for the input query. The experiments show that 1) our cost model can accurately predict the performance of each feasible query plan for the input query, and is able to guide the generation of the optimal query plan. 2) our optimized query plan achieves a performance speedup 1.5×–4× over the state-of-the-art query processing on OpenCL-based FPGAs.

IX. ACKNOWLEDGEMENT

We thank Altera and Intel for hardware donations. This work is supported by a MoE AcRF Tier 1 grant (MOE 2014-T1-001-145), an NUS startup grant and a HKUST startup grant (R9336).
REFERENCES

[29] B. Sukhwani, M. Thoennes, H. Min, P. Dube, B. Brezzo, S. Asaad, and D. Dillenberger. A hardware/software ap-

